Skip to content

DSMP by CampusX

🔖 Extra Sessions

📷 Interview Questions on Statistics

Description

📷 Model Explainability

Description

📷 Interview Questions on Regression

Description

📷 How to Solve a Banking Problem using ML

Description

📷 Session on ResNET Paper Discussion

Description

📷 Introduction to PyTorch

Description

📷 Named Entity Recognition using NLTK & Spacy

Description

📷 Latent Dirichlet Allocation (LDA)

Description

📷 Introduction to PowerBI

Description

📷 Anomaly Detection

Description

📷 Prompt Engineering

Description

📷 Interview Questions on Tree Based Models

Description

📷 Multioutput and Multiclass Classification Problem

Description

📷 EKYC Using Computer Vision

Description

📷 Time Series Forecasting

Description

📷 A/B Testing

Description

📷 Langchain

Description

📷 FastAPI

Description

📷 Vertex AI

Description

📷 RAG

Description

🔖 MLOps Revisited

📷 Session 1 MLOps Revisited - Introduction to MLOps

Description

📷 Session 2 on MLOps Revisited - MLOps Tools Stack

Description

🔖 Interview Questions

📷 Session 1 on Interview Questions on Statistics

Description

📷 Session on Project Based Interview Questions

Description

📷 Session 1 on ML Interview Questions

Description

📷 Recording - Session 3 on ML Interview Questions

Description

🔖 Miscellaneous Topics

📷 Session 1 on Imbalanced Data - Introduction

Description

📷 Session 2 on Imbalanced Data - Oversampling Techniques

Description

📷 Session 3 on Imbalanced Data - Undersampling Techniques

Description

🔖 Other Boosting Frameworks

📷 Session 1 on Introduction to LightGBM

Description

📷 Session 2 on LightGBM (GOSS & EFB)

Description

📷 Session 1 on CatBoost - Practical Introduction

Description

🔖 Advanced XGBoost

📷 Session on XGBoost Regularization

Description

📷 Session 2 on XGBoost Regularization

Description

📷 Session on XGBoost Optimizations

Description

📷 How XGBoost Handles Missing Values

Description

🔖 Feature Engineering

📷 Session 1 on Encoding Categorical Features

Description

📷 Session on Sklearn ColumnTransformer & Pipeline

Description

📷 Session on Sklearn Deep Dive

Description

📷 Session 2 on Encoding Categorical Features

Description

📷 Session 1 on Discretization

Description

📷 Session 2 on Discretization

Description

📷 Session 1 on Handling Missing Data

Description

📷 Session 2 on Handling Missing Data

Description

📷 Session 3 on Handling Missing Values

Description

📷 Session on Feature Scaling

Description

📷 Session 2 on Feature Scaling

Description

📷 Session 1 on Outlier Detection

Description

📷 Session 2 on Outlier Detection

Description

📷 Session 3 on Outlier Detection

Description

📷 Session on Feature Transformation

Description

🔖 Unsupervised Machine Learning

📷 Session on DBSCAN

Description

📷 Session on Hierarchical Clustering

Description

📷 Session on Gaussian Mixture Models

Description

📷 Session 2 on Gaussian Mixture Models

Description

📷 Session on T-SNE

Description

📷 Session 2 on T-SNE

Description

🔖 KMeans Clustering

📷 Session 1 on K Means Clustering

Description

📷 Session 2 on KMeans Clustering

Description

📷 Session 3 on KMeans Clustering

Description

📷 K-Means Clustering Algorithm From Scratch In Python

Description

📷 MiniBatch KMeans Task Solution

Description

🔖 MLOps

📷 Session 1 on MLOPs - Introduction to MLOps

Description

📷 Session 2 on MLOps - Version Control

Description

📷 Session 3 on MLOps - Reproducibility

Description

📷 Session 4 on MLOps - Data Version Control (DVC)

Description

📷 Session 5 on MLOps - ML Pipelines and Experimentation Tracking

Description

📷 Session 6 on MLOps

Description

📷 Session 7 on MLOps | Continuous Integration

Description

📷 Session 8 on MLOps - Dockers

Description

📷 Session 9 on MLOPs - Continuous Deployment

Description

📷 Session 10 on MLOps - Introduction to AWS

Description

📷 Session 12 on MLOps - Distributed Infrastructure

Description

📷 Session 13 on MLOps - Kubernetes Internals

Description

📷 Session 14 on MLOps - Deployment on Kubernetes

Description

📷 Session 15 on MLOps - Seldon Deployments

Description

📷 Session 16 on MLOps - Monitoring & Alerting

Description

📷 Session 17 on Rollout & Rollback Strategies

Description

📷 Session on MLOps Interview Questions

Description

📷 Session 18 on MLOps - ML Technical Debt

Description

🔖 XGBoost

📷 Introduction to XGBoost | XGBoost Part 1

Description

📷 XGBoost for Regression | XGBoost Part 2

Description

📷 XGBoost For Classification | XGBoost Part 3

Description

📷 The Complete Maths of XGBoost | XGBoost Part 3

Description

🔖 Capstone Project

📷 Session 1 on Capstone Project | Data Gathering

Description

Datasets

https://docs.google.com/spreadsheets/d/1mFNBKFgwFnCXvRsLps5FbsPt_WNnFYyOvBGwSFHZHRU/edit?usp=sharing

https://docs.google.com/spreadsheets/d/19Uw-4uktVEQKFzVHTRkd0DMJ4v3lQJsiCH63PlHwQdw/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1z55UOBr3nfFYf5JXkCAcTGameKrOm2a0irRfjKrpdSs/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1FzCcUbzBKG78snWFg3tAAD4E1sIjCClD9cfsA2DWAjg/edit?usp=sharing

Web Scraping Codes

Flats/Appartments : - https://colab.research.google.com/drive/1bKT92iRVecazQcc3eJmpZH7HZyCLk-oO?usp=sharing

https://colab.research.google.com/drive/1IclV7RVZSVNe3fo5WapspW6uo9uWLTU5?usp=sharing

https://colab.research.google.com/drive/1cmJ9xbSvErNXnfVP0xVBpcvf2hRz3fmp?usp=sharing

 

Notebook PDF : https://drive.google.com/file/d/179HLl-HQVoAFUKcGUtUujW72T1QJpcCJ/view?usp=sharing

📷 Session 2 on Capstone Project | Data Cleaning

Description

📷 Session 3 on Capstone Project | Feature Engineering

Description

📷 Session 4 on Capstone Project | EDA

Description

📷 Session 5 on Capstone Project | Outlier Detection and Removal

Description

📷 Session 6 on Capstone Project | Missing Value Imputation

Description

📷 Session 7 on Capstone Project | Feature Selection

Description

📷 Session 8 on Capstone Project | Model Selection & Productionalization

Description

📷 Session 9 on Capstone Project | Building the Analytics Module

Description

📷 Session 10 on Capstone Project | Building the Recommender System

Description

📷 Session 11 on Capstone Project | Building the Recommender System Part 2

Description

📷 Session 12 on Capstone Project | Building the Insights Module

Description

📷 Session 13 on Capstone Project | Deploying the application on AWS

Description

🔖 Week 36 - Gradient Boosting

📷 Session 1 on Gradient Boosting for Regression

Description

📷 Session 2 on Gradient Boosting | Perspectives

Description

📷 Gradient Boosting for Classification Part 1

Description

📷 Gradient Boosting for Classification | Geometric Intuition

Description

📷 Gradient Boosting Classification | Maths Formulation

Description

🔖 Week 35 - Random Forest

📷 Bagging | Introduction | Part 1

Description

📷 Bagging Ensemble | Part 2 | Bagging Classifiers

Description

📷 Bagging Ensemble | Part 3 | Bagging Regressor

Description

📷 Session 1 on Random Forest

Description

📷 Session 2 on Random Forest

Description

🔖 Week 34 - Decision Trees

📷 Session 1 on Decision Trees

Description

📷 Session 2 on Decision Trees

Description

📷 Session 3 on Decision Trees | Pruning

Description

📷 Awesome Decision Tree Visualization using dtreeviz library

Description

🔖 Week 33 - Support Vector Machines (SVM)

📷 SVM Part 1 - Hard Margin SVM

Description

📷 SVM Part 2 | Soft Margin SVM

Description

📷 Session on Constrained Optimization Problem

Description

📷 Session on SVM Dual Problem

Description

📷 Session on Maths Behind SVM Kernels

Description

🔖 Week 32 - Logistic Regression

📷 Session 1 on Logistic Regression

Description

📷 Session on Multiclass Classification using Logistic Regression

Description

📷 Session on Maximum Likelihood Estimation

Description

📷 Session 3 on Logistic Regression

Description

📷 Logistic Regression Hyperparameters

Description

🔖 Week 31 - Naive Bayes

📷 Crash Course on Probability Part 1

Description

📷 Crash Course on Probability Part 2

Description

📷 Session 1 on Naive Bayes

Description

📷 Session 2 on Naive Bayes

Description

📷 Session 3 on Naive Bayes

Description

📷 Email Spam Classifier | End to End Project

Description

🔖 Week 30 - Model Evaluation and Selection

📷 ROC Curve in Machine Learning

Description

📷 Session on Cross Validation

Description

📷 Session on Data Leakage

Description

📷 Session on Hyperparameter Tuning

Description

🔖 Week 29 - PCA

📷 PCA Part 3 | Code Example and Visualization

Description

📷 Session on Eigen Vectors and Eigen Values

Description

📷 Session on Eigen Decomposition + PCA Variants

Description

📷 Session on Singular Value Decomposition

Description

🔖 Week 28 - K Nearest Neighbors

📷 Session 1 on K-Nearest Neighbors

Description

📷 Coding K Nearest Neighbors from Scratch

Description

📷 How to draw Decision Boundary for classification algorithms

Description

📷 Session on Advanced KNN

Description

📷 Classification Metrics Part 1 | Accuracy and Confusion Matrix | Type 1 and Type 2 Errors

Description

📷 Classification Metrics Part 2 | Precision, Recall and F1 Score

Description

🔖 Week 27 - Regularization

📷 Regularization Part 1 | Bias Variance Trade-off

Description

📷 Regularization Part 2 | What is Regularization | Paid Zoom Session | 19th May

Description

📷 Ridge Regression Part 1 | Geometric Intuition and Code | Regularized Linear Models

Description

📷 Ridge Regression Part 2 | Mathematical Formulation & Code from scratch | Regularized Linear Models

Description

📷 Ridge Regression Part 3 | Gradient Descent | Regularized Linear Models

Description

📷 Ridge Regression Part 4 | 5 Key Points | Regularized Linear Models

Description

📷 Lasso Regression | Intuition and Code Sample | Regularized Linear Models

Description

📷 Why Lasso Regression creates sparsity?

Description

Code - 

📷 ElasticNet Regression | Intuition and Code Example | Regularized Linear Models

Description

🔖 Week 26 - Feature Selection

📷 Session 54 - Feature Selection Part 1 | Filter Methods

Description

📷 Session 55 - Feature Selection Part 2 | Wrapper Methods

Description

📷 Session 3 on Feature Selection | Embedded Methods

Description

🔖 Week 25 - Regression Analysis

📷 Session 1 on Regression Analysis

Description

📷 Session 2 on Regression Analysis

Description

📷 Polynomial Regression

Description

📷 Session on Assumptions of Linear Regression

Description

📷 Session 53 - Session on Multicollinearity

Description

🔖 Week 24 - Gradient Descent

📷 Session 51 - Gradient Descent From Scratch

Description

📷 Session 52 (Part 1) - Batch Gradient Descent

Description

📷 Session 52 (Part 2) - Stochastic Gradient Descent

Description

📷 Session 52 (Part 3) - Mini-Batch Gradient Descent

Description

🔖 Week 23 - Linear Regression

📷 Session 48 - Introduction to Machine Learning

Description

📷 Session 49 - Simple Linear Regression

Description

📷 Session 50 - Multiple Linear Regression

Description

📷 Session on Optimization The Big Picture

Description

📷 Session on Differential Calculus

Description

🔖 Week 22 - Linear Algebra

📷 Linear Algebra - Part 1 | Vectors

Description

📷 Linear Algebra Part 2 | Matrices (Computation)

Description

📷 Linear Algebra Part 3 | Matrices (Intuition)

Description

🔖 Week 21 - Hypothesis Testing

📷 Session 45 - Hypothesis Testing Part 1

Description

📷 Session 46 - Hypothesis Testing Part 2 | p-values | t-tests

Description

📷 Session on Chi Square Tests

Description

Code - https://colab.research.google.com/drive/113wsZhFcUDa-QnOeY3KmIBsJToyzE80e?usp=sharing

PDF - https://drive.google.com/file/d/1nmxMlse95CE0it612u55s9hudL2Xef4K/view?usp=share_link

 

@TimeStamp 02:01:00 :

Formlua for Chi-Square is : (Observed - Expected)^2 / Expected, not   (Observed - Expected)^2 / Observed

Calculation would go like : 

(15-12)^2 / 12 + (20-19)^2 / 19 + ... + (40 - 12)^2 / 12

📷 Session on ANOVA

Description

🔖 Week 20 - Inferential Statistics

📷 Session 43 - Central Limit Theorem

Description

📷 Session 44 - Confidence Intervals

Description

🔖 Week 19 - Probability Distributions

📷 Session 41 - Normal Distribution

Description

📷 Session 42 - Non-Gaussian Probability Distributions

Description

📷 Session on Views and User Defined Functions in SQL

Description

Session Notebook PDF (View and User Defined Function): https://drive.google.com/file/d/1NxvHiK-NJBIAzKMfFwf2ibgDRzYadqpS/view?usp=share_link

📷 Session on Transactions & Stored Procedures

Description

🔖 Week 18 - Descriptive Statistics Contd.

📷 Session 39 - Descriptive Statistics Part 2

Description

📷 Session 40 - Probability Distribution Functions - PDF, PMF & CDF

Description

📷 SQL Datetime Case Study on Flights dataset

Description

Code - https://docs.google.com/document/d/1g67XZ96yhIz6mqfzXJRhVvZXP26VVbYE4YX51Ck4c84/edit?usp=sharing

Dateset - https://docs.google.com/spreadsheets/d/13_PAiduepzVBMU-WYp_10NBMfMH12A9D2KgzieOtk1o/edit?usp=sharing

EDA question Pdf : https://drive.google.com/file/d/1DPA__10bpvte9wtvgLqehpZ9w31HZm2g/view?usp=share_link

For Q6: During Updation you would be getting error, like same as sir got warnings : Truncate invalid double value '5m', This is coming because of row no 5975.

Updated Query :
UPDATE flights
SET duration_mins = 
CASE
        WHEN duration LIKE '%h %m' THEN
            SUBSTRING_INDEX(duration, 'h', 1) * 60 +
            SUBSTRING_INDEX(SUBSTRING_INDEX(duration, ' ', -1), 'm', 1)
        WHEN duration LIKE '%h' THEN
            SUBSTRING_INDEX(duration, 'h', 1) * 60
        WHEN duration LIKE '%m' THEN
            SUBSTRING_INDEX(duration, 'm', 1)
END ;

📷 Session on Database Design | SQL Data Types | Database Normalization

Description

🔖 Week 17 - Descriptive Statistics

📷 Session 38 - Descriptive Statistics Part 1

Description

📷 Session on Datetime in SQL

Description

🔖 Week 16 - Advanced SQL

📷 Task 36 Solutions

Description

📷 Career Pe Charcha - Markdown Basics + How to improve Github Profile

Description

📷 Session 37 - Window Functions Part 2

Description

📷 Session 37 - Window Functions Part 3

Description

Window Functions Part-1 Pdf : https://drive.google.com/file/d/12P7vW2VBq0_4Nm3j1aQDB599HOy0OGtk/view?usp=share_link
Window Functions Part-2&3 Pdf : https://drive.google.com/file/d/1pTPslw_dOMwkK06Cu-lcHX5NzRtmNPW5/view?usp=share_link

 

Timestamp 19:30 : percentile_disc and percentile_cont
These functtions are not there in MySQL(InoDB) (Workbench default server).
In the sessions I have connected Xampp MySQL server with workbench.

📷 Session on Data Cleaning using SQL | Laptops Dataset

Description

📷 Session on EDA using SQL | Laptops Dataset

Description

Code Data Cleaning - https://docs.google.com/document/d/1_urkFSBPwEzHnZuycGlcjz_S5ofGLXynxKC0cPHP-uM/edit?usp=sharing

Code EDA - https://docs.google.com/document/d/1Izh0o3ZTsVcSw5ZHsX5uB7v7IGxJ7hbX7a3VfIuFv1c/edit?usp=sharing

Laptop dataset Uncleaned: https://www.kaggle.com/datasets/ehtishamsadiq/uncleaned-laptop-price-dataset
 

"Error Code: 1093 Resolution": https://docs.google.com/document/d/1-z5GmHsSpRWBa2_hvswMxDUO4f-ozsPTG-4mtyExhk8/edit?usp=sharing

 

EDA Plan


1. head -> tail -> sample
2. for numerical cols
    - 8 number summary[count,min,max,mean,std,q1,q2,q3]
    - missing values
    - outliers
    -> horizontal/vertical histograms
3. for categorical cols
    - value counts -> pie chart
    - missing value
4. numerical - numerical
    - side by side 8 number analysis--
    - scatterplot
    - correlation
5. categorical-categorical
    - contigency table -> stacked bar chart
6. numerical-categorical
    -> compare distribution across categories
8. missing value treatment
9. feature engineering
- ppi
- price_bracket
10. one hot encoding
 

🔖 Week 15 - SQL Continued

📷 Session 34 - SQL Joins

Description

📷 Task 34 Solutions

Description

📷 SQL Case Study 1 | Zomato Dataset

Description

📷 Session 35 - Subqueries in SQL

Description

Dataset Link - https://drive.google.com/drive/folders/1xCNbO_LJIkr7bi9YDa7hUFYgJ-IZ01A-?usp=share_link

For reading movies.csv in Python : 

df = pd.read_csv('movies.csv', delimiter=';', encoding_errors='ignore')

📷 Task 35 Solutions

Description

📷 Making a Flights Dashboard using Python and SQL

Description

📷 SQL Interview Questions Part 1

Description

🔖 Week 14 - SQL Continued

📷 Session 32 - SQL DML Commands

Description

📷 Task 32 Solutions

Description

📷 Session 33 - SQL Grouping + Sorting

Description

📷 Task 33 Solutions

Description

📷 Career QnA

Description

📷 Session 2 on Tableau - Sales Dataset

Description

🔖 Week 13 - SQL Basics

📷 Session 30 - Database Fundamentals

Description

📷 Session 31 - SQL DDL Commands

Description

📷 Session 1 on Tableau - Olympics Dataset

Description

🔖 Week 12 - Data Analysis Process Contd.

📷 Session on Data Cleaning Case Study - Smartphone dataset

Description

📷 Session 29 - Exploratory Data Analysis (Titanic Dataset)

Description

Notebook Link: https://colab.research.google.com/drive/13rFqQJqU5RgxSdtUARZAUrzAoweE3rbQ?usp=sharing

---------------------------------------------------------------------------------------------------------------------------------------- Dataset Link : https://drive.google.com/drive/folders/1oFZxHRuAw_JI7soe46mmO61s-WM7jtQg?usp=share_link

📷 Session on Data Cleaning Part 2

Description
  • colab.research.google.com{ target="blank" title="https://colab.research.google.com/drive/1TGYxt3X2YN7SlfocQg-6A9pakp-WXZX?usp=sharing" }

📷 Session on EDA Case Study - Smartphones Dataset

Description

🔖 Week 11 - Data Analysis Process

📷 Session 27 - Data Gathering | Data Analysis Process

Description

📷 Task 27 Solutions

Description

📷 Session 28 - Data Assessing and Cleaning

Description

Code - https://colab.research.google.com/drive/1ca-jlBvJ4uqpbCHFFgCFp9akIY7FSmGc?usp=sharing

Dataset - https://github.com/campusx-official/data-wrangling

 

For error at 2:03:00 : 'float' type is not subscriptable while extracting Phone number and email, use below code.

# For Phone Number

patients_df["contact"].apply(lambda x: find_contact_details(x)).apply(lambda x:'No data' if type(x[0])==float else x[0][-1])

# For Email:

patients_df["contact"].apply(lambda x: find_contact_details(x)).apply(lambda x:x[1])

📷 Session on ETL using AWS RDS

Description

📷 Session on Advanced Web Scraping using Selenium

Description

🔖 Week 10 - Data Visualization Continued

📷 Session 25 - Plotting using Seaborn

Description

📷 Task 25 Solutions

Description

📷 Session 26 - Plotting using Seaborn Part 2

Description

📷 Task 26 Solutions

Description

📷 Session on Open Source Software Part 1

Description

📷 Session on Open Source Software Part 2

Description

🔖 Week 9 - Data Visualization

📷 Session 23 - Plotting using Matplotlib

Description

📷 Task 23 Solutions

Description

📷 Session 24 - Advanced Matplotlib

Description

📷 Task 24 Solutions

Description

📷 Session on Plotly(Express)

Description

📷 Making a Corona virus(Covid-19) Dashboard using Plotly and Dash

Description
You can get the code and datasets from here: https://github.com/campusx-official/campusx-official Dataset : https://github.com/NitRookies/COVID19_Codechef/

📷 Project using Plotly

Description

Datasets - https://www.kaggle.com/datasets/sirpunch/indian-census-data-with-geospatial-indexing

https://www.kaggle.com/datasets/danofer/india-census?select=india-districts-census-2011.csv

Kaggle Notebook - https://www.kaggle.com/code/campusx/notebook1f43313be3

Project Files - https://github.com/campusx-official/india-data-viz-mini-project

 

For ModuleNotFoundError in Session Indian Startup Funding at timestamp : 2:13:00 :
 -> Similar Issue been resolved in this session from Timestamp 1:54:35

🔖 Week 8 - Advanced Pandas Continued

📷 Session 21 - MultiIndex Series and DataFrames

Description

📷 Task 21 Solutions

Description

📷 Session 22 - Vectorized String Operations | DateTime in Pandas | Pivot Table

Description

📷 Task 22 Solutions

Description

📷 Pandas Case Study - Time Series Analysis

Description

📷 Pandas Case Study 2 - Working with textual data

Description

🔖 Week 7 - Advanced Pandas

📷 Session 19 - GroupBy Object in Pandas

Description

📷 Task 19 Solutions

Description

📷 Session 20 - Merging, Joining & Concatenating

Description

📷 Task 20 Solutions

Description

📷 Session on Streamlit

Description

📷 Pandas Case Study - Indian Startup Funding

Description

Code - https://github.com/campusx-official/streamlit-basics

Kaggle code - https://www.kaggle.com/campusx/startup-data-analysis

Plan of Action - https://docs.google.com/document/d/1zk4751zmG2b4XnYGW06tu0MWyr2PgLlMaSci7eUVL2M/edit?usp=sharing

Dataset - https://www.kaggle.com/datasets/sudalairajkumar/indian-startup-funding

 

Timestamp -> 0:40:50 

# Converting date column datatype

df['date'] = df['date'].replace({'05/072018':'05/07/2018', '01/07/015':'01/07/2015', '22/01//2015':'22/01/2015'})

df['date'] = pd.to_datetime(df['date'])

For Issue at time 2:03:58 :
Use session state for option:
# Like below, the rest codes are the same as of sir's GitHub repo.

st.session_state.option = st.sidebar.selectbox(

    'Select One', ['Overall Analysis', 'StartUp', 'Investor'], key='analysis')

option = st.session_state.option

if option == 'Overall Analysis':

    load_overall_analysis()

 

For ModuleNotFoundError at 2:13:00 :
 -> Similar Issue been resolved in Week 9: Project Using Plotly session from Timestamp 1:54:35

 

📷 Session on Git

Description

Download Git - https://git-scm.com/download/win

What is GIT
What is VCS/SCM
Examples of VCS
Why git/VCS is needed
Types of VCS
- Centralized
- Distributed
Advantages
- Version control
- Bug Fixing
- doing non-linear development
- collaborative development
************************************
How git works? -> terminology
installing git
************************************
Creating a repo
cloning someone else's repo
status
************************************
Making Changes
- add
- commit
- When to commit?
- commit messages?
** short
** Explain what
** rule of thumb no and
** This commit will ...
- add .
- gitignore
***********************************
Seeing commits
- log -> oneline -> stat -> p
- show
- seeing commits of someone else's repo
- diff
**********************************
Creating versions of a software
- tag->X.Y.Z
X – The major version, used for making major and backward-incompatible changes.
Y – The minor version, used for adding functionality while maintaining backwards compatibility.
Z – The patch version, used for making small bug fixes while maintaining backwards compatibility.
- deleting tag
- adding tag to a past commit
**********************************
 

GIT PDF : https://drive.google.com/file/d/1jmialN0Jhhuj5fl2K1N7R9LosoIjrtDb/view?usp=sharing

📷 Session on Git and Github Part 2

Description

******************************************************
Non linear development(Branching)
******************************************************
-> Scenario(Individual)
-> Scenario(Team)
-> Using branches -> You had one branch already
-> concept of head pointer
HEAD is the reference to the most recent commit in the current branch. This means HEAD is just like a pointer that keeps track of the latest commit in your current branch.
-> Creating branches on head
-> Creating branches on past commits
-> Show all branches -> Active Branch
-> switch between branches->How this works?
-> Understanding what will come under a branch(git log)
-> Making new commits in all branches(git log)
-> see all branches at once -> --graph --all
-> deleting branches
******************************************************
Merging Branches
******************************************************
-> What is merging
-> What happens at merging
** A new commit is created on merging
** look at the branches that it's going to merge
** look back along the branch's history to find a single commit that both branches have in their commit history
** combine the lines of code that were changed on the separate branches together
** makes a commit to record the merge
** Note - Merging happens at the checked out branch. No new branches are created
-> Types of merging -> Fast Forward -> Regular(Divergent branches)
-> Fast Forward -> show log
-> Merging Divergent Branches -> show log
-> Merge Conflict
(<<<<<<< HEAD) everything below this line (until the next indicator) is code of current branch
(=======) is the end of the original lines, everything that follows (until the next indicator) is what's on the branch that's being merged in
(>>>>>>> heading-update) is the ending indicator of what's on the branch that's being merged in
-> Resolving Conflicts
****************************************************************************************************
Undoing Changes
****************************************************************************************************
-> editing the last commit message
-> forgot to add some files to the last commit
-> rolling back to a specific state using show
-> revert a commit
*****************************************************************************************************
Working with a remote repo
******************************************************************************************************
-> Need -> scenario-> collaboration
-> The flow diagram
-> create a new repo on github
-> add remote(git remote add origin )
-> push code(git push )
-> git log -> tracking branch
-> add a readme file 
-> pull code

GIT PDF : https://drive.google.com/file/d/1jmialN0Jhhuj5fl2K1N7R9LosoIjrtDb/view?usp=sharing

🔖 Week 6 - Pandas

📷 Session 16 - Pandas Series

Description

📷 Important Series Methods | Supplementary Session

Description

📷 Session 17 - Pandas DataFrame

Description

📷 Session 18 - Important DataFrame Methods

Description

📷 Session on API Development Using Flask

Description

📷 Week 6 - Numpy Interview Questions

Description

📷 Task 16 Solutions

Description

📷 Task 17 Solutions

Description

📷 Task 18 Solutions

Description

Code - https://colab.research.google.com/drive/1NcOunueBaiVEkj2Y4DcGyf2jBIHlE9QQ?usp=sharing

Question No. 6 Solution:

Modification in notebook: While calculation home_win and away_win, use bitwise AND operator-(&). In solution bitwise OR is given.

home_win = df[(df.WinningTeam == team) & (df.Team1 == team)].shape[0] / df[df.Team1 == team].shape[0] * 100

away_win = df[(df.WinningTeam == team) & (df.Team2 == team)].shape[0] / df[df.Team2 == team].shape[0] * 100

🔖 Week 5 - Numpy

📷 Session 13 - Numpy Fundamentals

Description

📷 Session 14 - Advanced Numpy

Description

📷 Session 15 - Numpy Tricks

Description

📷 Session on Web Development using Flask

Description

📷 Task 13 Solutions

Description

📷 Task 14 Solutions

Description

📷 Task15 Solutions

Description

🔖 Week 4 - Advanced Python

📷 Session 10 - File Handling + Serialization & Deserialization

Description

Code https://colab.research.google.com/drive/1TP7ks1pnEzJwwzHtswkSYvMWwo2HeRxM?usp=sharing

at Timestamp : 54:00 Reading a big text file

with open('big.txt', 'r') as f:
    chunk_size = 10
    data = f.read(chunk_size)
    while len(data) > 0:
        print(data, end='****')
        data = f.read(chunk_size)
 

 

📷 Session 11 - Exception Handling

Description

📷 Session 12 - Decorators & Namespaces

Description

📷 Supplementary Session on Iterators

Description

📷 Supplementary Session on Generators

Description

📷 Session on Resume Building

Description

📷 Session on GUI Development using Python [2nd Dec - Fri]

Description

📷 Week 4 - Interview Questions

Description

📷 Task 10 Solutions

Description

📷 Task 11 Solutions

Description

📷 Task 12 Solutions

Description

🔖 Week 3 - Object Oriented Programming(OOP)

📷 Session 7 - OOP Part 1 | Class & Object

Description

📷 Task 7 Solutions

Description

📷 Session 8 - OOP Part 2 | Encapsulation & Static Keyword

Description

📷 task-8-solutions

Description

📷 Session 9 - OOP Part 3 | Inheritance & Polymorphism

Description

📷 What is Abstraction | OOP Concept

Description

📷 task-9-solutions

Description

📷 Session on OOP Project

Description

📷 Week 3 - Interview Questions

Description

🔖 Week 2 - Python Data Types

📷 Session 4 - Lists in Python

Description

📷 Task 4 Solutions

Description

Code - https://colab.research.google.com/drive/1uBqC9zOZH3e26WWc-R4dplohg2uvR-Xs?usp=sharing

Problem 14 : 

print([[row[i] for row in matrix]for i in range(len(matrix))]) # Only works for Square Matrix.

# Updated code 
print([[row[i] for row in matrix]for i in range(len(matrix[0]))])

📷 Session 5 - Tuples + Sets + Dictionary

Description

📷 Task 5 Solutions

Description

📷 Session 6 - Functions in Python

Description

📷 Task 6 Solutions

Description

📷 Session on Array Interview Questions

Description

Code - https://colab.research.google.com/drive/1xUoy5AW_vlI92xbIcfEbnx0ZnGb7IKbj?usp=sharing

Time Stamp: 40:00. Q10 Maximum Sum SubArray.
Getting the best sum but Array printed is not correct.
This is happening because of list referencing. Say we have a list a = [1,2,3] and another list b which is same as a like a = b, so if we make changes in a, b will also change. But if we assign b like:  b = a[:] This time upon changing a, b will not change.

Correction in approach 1 : 
d[sum(subarray)] = subarray[:] # Cloning will solve this.

Correction Correction in Approach 2:
best_seq = curr_seq[:]

📷 Week 2 - Interview Questions

Description

🔖 Week 1 - Basics of Python Programming

📷 Session 1 - Python Basics

Description

📷 Session 2 - Operators + If-Else + Loops

Description

📷 Week 1 - Task 1 + Task 2 Solutions

Description

📷 Session 3 - Python Strings

Description

📷 Programming Problems on Strings

Description

📷 Week 1 Task 3 Solutions

Description

📷 How to Build a Portfolio Website for Data Science

Description

📷 Session on Time Complexity

Description

📷 Week 1 - Interview Questions

Description

🔖 Career Pe Charcha

📷 Session on Open Source Software

Description
Github Discussions - https://resources.github.com/devops/process/planning/discussions/ Github Actions - https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions Github Projects - https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects